
Software Design and Architecture Assignment

Paradox AI Studio Tongue Diagnosis
Final Report

Group： 1 2025 / 12 / 22

Topic Paradox AI Studio Tongue Diagnosis Final Report

Name Student
Number Major Email

Member 1 闫弘宇 20223803065 Software
Engineering hongyu.yan@163.com

Member 2 盖乐蕾 20233802023 Software
Engineering 3641526296@qq.com

Member 3 陈思凡 20223803053 Software
Engineering 2652212759@qq.com

Member 4 刘思远 20223803045 Software
Engineering 1354828493@qq.com

Member 5 王思蕴 20233802021 Software
Engineering 1051158053@qq.com

Supervisor Faizan Khan Words 15000+

Abstract: This report presents a preliminary machine-learning-based traditional
Chinese medicine (TCM) tongue diagnosis system, establishing an end-to-end
intelligent analysis and application pipeline from problem background to technical
feasibility. We developed a prototype system that adopts a cascaded pipeline
consisting of YOLOv5 for localization, SAM for segmentation, and SE-ResNet for
classification, combined with a FastAPI backend and an Electron + Vue client.
Structured diagnostic reports are generated using a locally deployed large language
model via Ollama. To ensure engineering quality, the system implements a
front-end/back-end separated architecture, JWT-based authentication with TLS
encryption, data persistence using SQLite and SQLAlchemy, public access via
Nginx/Caddy and FRP, CI/CD driven by Jenkins, and multi-level testing using pytest,
Cypress, and Apifox. Experimental results show that the system is functional, while
improvements are still needed in data quality, cross-device robustness, and medical
validation. Future work will focus on knowledge distillation and semi-supervised
learning, on-device acceleration, enhanced image acquisition guidance and historical
analysis, and the construction of a “feature–symptom” knowledge base.

Acknowledgments

This report represents a staged outcome of the course project and has benefited
greatly from the guidance and timely feedback provided by the course instructor,
Faizan Khan, in terms of topic selection, methodology, and engineering practice.
During the processes of requirement analysis, technical route selection,
implementation, and testing, the instructor’s suggestions and annotations significantly
improved both the technical depth and the writing quality of this project. We also
thank our classmates for their cooperation and constructive feedback during
discussions and system integration. Any remaining shortcomings in this report are
solely the responsibility of our team.

This project relies heavily on the open-source ecosystem and community resources.
We sincerely thank the Vue community, as well as Element Plus and Tailwind, for
their support in front-end development; FastAPI, Pydantic, Uvicorn, SQLAlchemy,
and SQLite for their stable and efficient backend and persistence support; and
PyTorch for providing the training and inference framework. Special thanks are
extended to YOLOv5, the Segment Anything Model (SAM), ResNet, and the
Squeeze-and-Excitation (SE) mechanism for their contributions to computer vision
and classification performance. For deployment and operations, we thank FRP, Nginx,
Caddy, and Jenkins; for testing and collaboration, pytest, Cypress, Apifox, Postman,
Git, and GitHub. We also acknowledge Ollama and deepseek-r1-14b for their support
in report generation and interactive explanations.

Regarding data and domain knowledge, we thank the open-source community,
publicly available literature, and the students and volunteers who assisted with tongue
image annotation and quality assessment. As the team does not have a formal medical
background, we are grateful to professionals in traditional Chinese medicine for their
informal guidance, which helped us better understand the importance of a validated
“feature–symptom/constitution” mapping and expert verification loop. In future work,
we will continue to improve data compliance, privacy protection, and ethical review,
while strictly adhering to the licenses and usage boundaries of all open-source
component.

Contents
Part01: Introduction .. 1

1.1 Problem Statement ...1
1.1.1 Reailty ..1
1.1.2 Ideal ... 1
1.1.3 Proposal ... 1
1.1.4 Consequences .. 2

1.2 Background & Literature Review ... 2
1.2.1 Current Situation of Overseas Research ... 2
1.2.2 Current Situation of Domestic Research ...4

1.3 Stakeholders ...7
1.4 Scope of the Software ..7
1.5 Technologies and Tools Used .. 8

Part02: Requirement Documents ..9
2.1 Functional Requirements ...9

2.1.1 User Account Management (FR-UAM) ..9
2.1.2 Core process of intelligent tongue diagnosis (FR-CORE)11
2.1.3 Diagnostic History Management (FR-HIST) ... 14

2.2 Non-functional Requirements ... 15
2.2.1 Performance requirements (NFR-PERF) ..15
2.2.2 Availability requirements (NFR-USAB) ...15
2.2.3 Reliability and Availability (NFR-REL/AV) ...15
2.2.4 Compatibility requirements (NFR-COMP) .. 16
2.2.5 Security requirements (NFR-SEC) ... 16
2.2.6 Maintainability and Scalability (NFR-MAINT/EXT) .. 17

Part03: Software Architecture .. 18
3.1 System High-Level Architecture Diagram ..18
3.2 UML Diagrams (4+1 View) .. 22

3.2.1 The Scenario View (User Interface View) .. 22
3.2.2 The Logical View .. 23
3.2.3 The Development View ...27
3.2.4 The Process View .. 28
3.2.5 The Physical View...29

3.3 Database Design / ER Diagram ...29
3.4 UI/UX Design ..31

Part04: API Documents .. 32
4.1 Basic Format ..32
4.2 User Management ..32

4.2.1 User Registration ...32
4.2.2 User Login ...33
4.2.3 Get User Info ...33
4.2.4 Get User Record .. 34

4.3 Tongue Diagnosis Analysis ... 35

4.3.1 Upload image and analysis ..35
4.3.2 Send message to a session ...35
4.3.3 Obtain conversation chat records ..36
4.3.4 Obtain all conversation lists ..37

Part05: Software Implementation ...39
5.1 Development Approach ...39

5.1.1 Front-end Application ... 39
5.1.2 Back-end Application ..39
5.1.3 Security System ...40

5.2 Key Algorithms and AI technologies .. 41
5.2.1 Data Pre-processing ...41
5.2.2 Classification Network Construction ..42

5.3 Development collaboration ... 44
Part06: Software Testing ...46

6.1 Test Strategy .. 46
6.2 Test Cases & Results ... 46

6.2.1 Front-end e2e testing ...47
6.2.2 Interface Layer - Apifox Testing ... 48
6.2.3 Backend unit testing ..49

6.3 AI Performance Test .. 50
6.3.1 Tongue color characteristics ..51
6.3.2 Tongue coating color characteristics ...51
6.3.3 Thickness of the tongue ...52
6.3.4 Greasy or slimy characteristics of the tongue ...52
6.3.5 Summary ... 52

Part07: Software Deployment and Operations Management ...54
7.1 Ops Technical Route ..54
7.2 Software Deployment Process ...55

7.2.1 Pre-requisite Requirements ... 55
7.2.2 Configuration ...55
7.2.3 Application Setup .. 56

7.3 Frp Service Configuration ... 59
7.4 Nginx/Caddy Service Configuration ...60

7.4.1 Preceding dependency download ..60
7.4.2 Obtaining SSL Certificate - Let's Encrypt .. 61
7.4.3 Create the Nginx configuration file .. 61
7.4.4 Start the site and test the configuration ...62
7.4.5 Set up automatic renewal .. 63

7.5 Client Application Preparation .. 63
Part08: Project Management ...64

8.1 Roles & Responsibilities ... 64
8.2 Tools & Methodology ..65

Part09: User Guide ..67
9.1 Installation ... 67

9.2 Register & Login Page .. 70
9.3 Home Page ...71
9.4 Intelligent Tongue Diagnosis ...72
9.5 Uninstallation ...74

Part10 Conclusion ...76
10.1 Challenges & Limitations ..76

10.1.1 Challenges ... 76
10.1.2 Limitations ...76

10.2 Future Enhancements .. 77
10.2.1 Model Performance Optimization ...77
10.2.2 Optimize the User Experience .. 77
10.2.3 Detailed test results ... 77

1

Part01: Introduction

1.1 Problem Statement

1.1.1 Reailty

At present, traditional Chinese medicine tongue diagnosis, as a valuable non-invasive
diagnostic method, faces two major challenges in modern applications. First, tongue
diagnosis relies heavily on the long-term clinical experience of practitioners, resulting
in strong subjectivity and difficulties in standardization and large-scale deployment,
which significantly limits service availability. Second, transitioning from manual
interpretation to automated intelligent analysis introduces substantial technical
challenges, including robust tongue region segmentation, effective modeling of
fine-grained features, and the encapsulation of complex algorithms into user-friendly
applications. To date, no unified or mature solution has been established.

1.1.2 Ideal

The ideal solution is to develop an intelligent system capable of bridging these gaps
by transforming traditional tongue diagnosis knowledge into computable and
executable algorithmic models, enabling automation and standardization of the
diagnostic process. Users, regardless of their medical background, should be able to
upload tongue images through an intuitive application and receive objective and
reliable preliminary health assessments. Such a system can serve as an assistive tool
for practitioners to improve diagnostic efficiency, as well as an intelligent health
management assistant for the general public, thereby significantly enhancing the
accessibility and inclusiveness of traditional Chinese medicine services.

1.1.3 Proposal

This project aims to deliver an end-to-end machine-learning-based tongue diagnosis
solution through systematic software engineering and machine learning research. The
core proposal is to construct a multi-model collaborative intelligent analysis pipeline
and encapsulate it within a user-friendly, cross-platform application. Specifically, a
hybrid strategy combining YOLOv5 and the Segment Anything Model is adopted for
high-quality tongue localization and segmentation. A ResNet-based classification
network enhanced with Squeeze-and-Excitation attention mechanisms is employed for
multi-dimensional feature classification. The complete workflow, from data input to
result presentation, is realized through a FastAPI backend and an Electron + Vue

2

front-end.

1.1.4 Consequences

The successful implementation of this project addresses key challenges in the
modernization of traditional tongue diagnosis. From a technical perspective, it
validates the effectiveness of a cascaded multi-model architecture for complex
medical image tasks and provides valuable practical insights into model training and
optimization. From an application perspective, it transforms sophisticated AI
technologies into accessible public services, bridging the gap between professional
medical expertise and everyday health needs, and demonstrating the significant social
value of applying artificial intelligence to traditional medicine.

1.2 Background & Literature Review

1.2.1 Current Situation of Overseas Research

At present, there are relatively few overseas studies that are strongly related to the
research direction of this project. Most existing research focuses more on the
application of computer vision techniques in various modern medical fields, with
limited efforts to directly associate these techniques with tongue image analysis or
apply them to the domain of traditional Chinese medicine. Jianpeng Zhang et al.[1]
proposed the DoDNet model to address the problem of partially annotated
multi-organ and tumor segmentation in abdominal CT scans. DoDNet is a single
encoder– decoder network with dynamic heads. Experimental results show that,
benefiting from task encoding and dynamic filter learning, DoDNet not only achieves
the best overall performance on seven organ and tumor segmentation tasks, but also
demonstrates faster inference speed than other competing methods.

Wei Ji et al.[2] pointed out that in medical image analysis, a typical practice is to
collect multiple annotations, each provided by different clinical experts or raters, in
order to reduce potential diagnostic errors. Meanwhile, from the perspective of
computer vision practitioners, the common approach is to obtain ground-truth labels
through majority voting or by simply selecting annotations from a preferred rater.
However, this process often overlooks the rich information about agreement or
disagreement contained in the original multi-rater annotations.

To address this issue, they proposed a new model, MRNet. First, an expertise-aware
inferring module (EIM) is designed to embed the expertise levels of individual raters
as prior knowledge, thereby forming high-level semantic features. Second, the method
is able to reconstruct multi-rater rankings from coarse predictions and further exploit
agreement or disagreement cues among raters to improve segmentation performance.

3

Experimental results show that MRNet achieves superior performance compared with
state-of-the-art methods, and also verify its effectiveness and applicability across a
wide range of medical segmentation tasks.

Qichao Tang et al.[3] investigated a deep-learning-based tongue detection method,
using the MobileNetV2[4] for feature extraction, which is capable of accurately
detecting the tongue from facial images. However, the proposed tongue detection
model was not further extended or integrated with real-world clinical cases.

In the above studies, the focus is primarily on the application of computer vision
techniques in the field of medical image analysis. More generally, the current state of
overseas research tends to emphasize the proposal and construction of more
general-purpose and efficient deep learning models, followed by analysis and
comparison of these models to identify those with superior performance and
efficiency under the context of traditional Chinese medicine tongue diagnosis. This
trend is of significant importance to the present research project.

In the early 21st century, feature extraction was largely based on researchers’domain
knowledge, such as the Scale-Invariant Feature Transform (SIFT)[5]. Features
designed in this manner are referred to as handcrafted features. However, handcrafted
features are not always optimal, as they are extracted using algorithms designed
according to researchers’ prior knowledge, and such feature extraction methods are
inherently limited by the designers’ knowledge systems.

In the 2010s, deep learning emerged and underwent rapid development. Deep learning
algorithms greatly simplified the process of manual feature extraction, enabling
models to automatically perceive and extract features. In 2014, Girshick et al. [6]
proposed the Region-based Convolutional Neural Network (R-CNN) for object
detection. This method uses selective search to generate region proposals, extracts
features from each proposal using a CNN, and performs classification using a Support
Vector Machine (SVM)[7].

In 2015, Kaiming He et al.[8] proposed the ResNet residual network, which enables
the training of very deep neural networks and addresses the problems of vanishing
and exploding gradients in traditional deep networks. ResNet can be used to learn
abstract features from tongue coating images. By stacking deep residual blocks, the
network is able to capture image features at different levels, thereby better
representing subtle variations in tongue coating characteristics. In the same year, Olaf
Ronneberger et al.[9] proposed the U-Net image segmentation model. U-Net was
specifically designed for biomedical image segmentation tasks, particularly for
precise segmentation of cells and organs in medical images. Compared with other
segmentation models, U-Net is more suitable for small datasets and medical image
segmentation tasks. Although U-Net provides strong segmentation capabilities, it still
requires a more accurate image localization model beforehand to assist in achieving

4

more precise segmentation results.

In 2016, Joseph Redmon et al.[10] proposed the YOLO model, which stands for
“You Only Look Once.” This name reflects the core design philosophy of the
algorithm: object detection and localization can be completed through a single
forward pass. YOLO formulates object detection as a regression problem, directly
outputting object categories and bounding box coordinates in one step. Compared
with traditional two-stage object detection methods (such as R-CNN), YOLO adopts a
simpler single-network structure. In addition, YOLO introduces the concept of
Anchor Boxes to handle objects of different sizes and aspect ratios, enabling the
model to better adapt to targets with varying shapes and scales.

In 2023,Kirillov, A et al.[11] proposed the Segment Anything Model (SAM), as the
name suggests, aiming to “segment anything.” The design of SAM mainly relies on
three key components: (1) Task: promptable segmentation tasks that enable zero-shot
generalization; (2) Model: the model architecture; and (3) Data: datasets that support
both the tasks and the model. Trained on millions of images and over one billion
masks, SAM is capable of producing valid segmentation masks for any given prompt.
This represents an important introduction of self-attention mechanisms into the field
of computer vision.

Through the review of overseas research, it can be observed that the field of computer
vision has undergone continuous innovation and development, providing advanced
solutions for medical image analysis and object detection. From Scale-Invariant
Feature Transform (SIFT) to the rise of deep learning, models such as R-CNN and
ResNet have introduced more efficient approaches to object detection and image
classification tasks. Image segmentation has also been significantly enhanced by
powerful models such as U-Net and YOLO. These overseas research achievements
provide rich technical support for intelligent tongue diagnosis in traditional Chinese
medicine and lay a solid foundation for the development of this field. As a result, in
recent years, an increasing number of studies have focused on applying deep learning
techniques to modern medical domains, particularly medical imaging. By drawing on
and integrating these advanced computer vision techniques, it is expected that more
significant progress can be achieved in the automated analysis and intelligent
diagnosis of traditional Chinese medicine tongue images.

1.2.2 Current Situation of Domestic Research

Compared with overseas studies, domestic research places greater emphasis on the
application of these models, with a stronger tendency to integrate deep learning
models with traditional Chinese medicine theory and apply deep learning to specific
tongue diagnosis scenarios. The goal is to train models that can be practically used in
concrete traditional Chinese medicine tongue diagnosis tasks.

5

黄恩铭 et al.[12] focused on investigating the relationship between “constitution
types and tongue images. ” They employed TensorFlow-based deep learning
techniques to perform precise segmentation of tongue images and extract color, shape,
and texture features of the tongue body, enabling automatic identification of potential
traditional Chinese medicine constitution types, including balanced constitution,
qi-deficiency, yin-deficiency, yang-deficiency, phlegm-dampness, damp-heat, blood
stasis, and qi-stagnation. Ultimately, they developed a WeChat mini-program that
allows users to upload tongue images, with the application automatically identifying
constitution types and generating corresponding reports and recommendations.

江涛[13] aimed to establish an intelligent tongue diagnosis technique based on deep
learning and to promote its application in clinical tongue diagnosis, thereby providing
technical support for traditional Chinese medicine diagnostic systems centered on
tongue examination.

Specifically, Mask R-CNN was first employed to automatically segment tongue
image boundaries and perform pixel-level precise segmentation of the tongue region,
establishing a high-quality automatic tongue region recognition and segmentation
model. Subsequently, models such as ResNet were used to efficiently classify four
tongue body colors (light red, pale white, red, and purplish) and three tongue coating
colors (white, yellow, and gray-black). Faster R-CNN was then applied to detect
seven types of tongue morphology and texture features, including tooth marks,
fissures, prickles, petechiae, greasy coating, peeled coating, and rotten coating,
achieving lightweight multi-task fused intelligent batch analysis of tongue images.
Finally, Spearman analysis and complex network analysis were used to explore the
relationships between tongue image indicators and clinical disease indicators. For
common conditions in health examination populations, such as metabolic syndrome,
non-alcoholic fatty liver disease, and sub-health status, multiple linear regression,
logistic regression, and various machine learning methods (SVM, Naive Bayes,
Random Forest, ResNet, etc.) were applied to investigate the relationships between
tongue image features and disease diagnosis or health status. The results indicate that
deep learning methods enable quality control of tongue images, pixel-level
segmentation of tongue regions, and classification of tongue color, morphology, and
texture, thereby achieving preliminary intelligent tongue image diagnosis.

Changzheng Ma et al.[14] proposed a machine-learning-based screening model for
precancerous gastric lesions (PLGC). They applied machine learning methods by
using the YOLOv5 model for image segmentation and the ResNet50 model to
construct an image classification framework. Statistical analysis was then conducted
using the Python Scikit-learn package, revealing potential correlations between
tongue image features and PLGC. This study also presented the first deep learning
screening model for PLGC based on tongue images, named AITongue.

Lintai Wu[15] utilized convolutional neural networks to extract features from tongue

6

images for the diagnosis of diabetes mellitus (DM). To address the issue of limited
data, they first applied parameter transfer methods from transfer learning. In order to
embed the model into portable diagnostic devices, the SqueezeNet Architecture[16]
was adopted for diabetes image detection. Model performance was evaluated in terms
of accuracy, sensitivity, and specificity. The results demonstrate that this method
performs well in DM diagnosis.

牛富泉 [17] proposed a deep-learning-based traditional Chinese medicine tongue
image classification model and further developed a web-based auxiliary tongue
diagnosis platform based on this model, providing remote diagnostic assistance for
physicians and patients.

To address issues such as low segmentation accuracy, poor color correction, and low
tongue feature recognition accuracy in traditional models, this study proposed a
pyramid pooling tongue image segmentation algorithm based on a pyramid scene
parsing network and ResNet101, a two-stage tongue image color correction algorithm
combining subjective and objective methods based on AlexNet, and a tongue feature
recognition algorithm based on a squeeze-and-expansion network. Comparative
experiments with other algorithms showed that the proposed methods achieved
superior performance. However, the authors also noted that the study did not fully
consider multi-scale feature pooling capabilities, which may result in extracted tongue
features that do not fully represent global characteristics.

Zongrun Li et al.[18] aimed to establish an end-to-end deep learning network for
intelligent tongue image analysis based on traditional Chinese medicine tongue
diagnosis images. Based on the data characteristics of clinical trial indicators
dominated by continuous variables, a dual-stream architecture was adopted to
construct the intelligent tongue analysis network.

In this study, a U-Net-based tongue segmentation model at the network front end was
used to segment tongue target regions from original images. After segmentation, a
ResNet network was employed to extract feature vectors from the tongue regions. On
the day of image acquisition, convolutional operations in the ResNet network were
used to extract fused feature vectors from blood pressure data. Through this process,
two sets of tongue features and fused features were successfully obtained. Based on
the analysis of blood pressure data, tongue images, and their fused data at the network
output, four regression methods—Random Forest (RF), AdaBoost, Gradient Boosting
Regression Trees (GBRT), and Support Vector Regression (SVR)—were applied to
predict the Mean Absolute Error (MAE). The results indicate that multimodal data
fusion is an important approach for uncovering the clinical value of traditional
Chinese medicine tongue images.

Overall, compared with overseas research, domestic studies place greater emphasis on
the application of deep learning models in real-world traditional Chinese medicine

7

tongue diagnosis scenarios. By exploring specific disease diagnosis tasks such as
diabetes and precancerous gastric lesions, as well as tongue image classification and
auxiliary remote diagnosis, these studies demonstrate the potential value of deep
learning in traditional Chinese medicine tongue diagnosis. Domestic researchers
actively adapt and improve existing models to better align with traditional Chinese
medicine tongue diagnosis requirements, thereby enhancing model performance.
These studies provide strong support for the development of intelligent tongue coating
diagnosis projects.

1.3 Stakeholders

The stakeholders of this project include the following categories.

First are end-users, including general users who hope to obtain convenient and
low-cost preliminary health assessments, as well as traditional Chinese medicine
practitioners and health consultants with some knowledge of traditional Chinese
medicine but who wish to improve efficiency with the help of intelligent tools; they
focus on usage barriers, result readability, privacy, and data security.

Next are the parties related to medical and health services, such as traditional Chinese
medicine clinics, health management institutions, and education and training
institutions. They expect the system to bring value in terms of standardization,
reusability, and decision support, and emphasize compliance boundaries and risk
warnings.

In addition, there are internal stakeholders within the project team, including Product
Managers and Architects, Front-End and Back-End Developers and Algorithm
Engineers, Testing and Documentation Staff, as well as Operations and Security
Engineers. Meanwhile, Data Annotation and Research Partners are also crucial, as
they provide data and method support for Model Training and focus on academic
achievements and reproducibility.

Finally, the platform, open-source communities (such as Ultralytics, SAM, FastAPI,
Ollama, etc.), and their license maintainers are key external stakeholders. They focus
on our compliance with open-source licenses, secondary distribution and commercial
use compliance, as well as continuous follow-up on community norms and adoption
of feedback. These requirements directly impact component selection, source code
open strategy, dependency version management, and the usage boundaries of
third-party assets.

1.4 Scope of the Software

The scope of this software is positioned as a "preliminary health assessment tool for

8

traditional Chinese medicine tongue image based on Machine Learning", emphasizing
the combination of intelligent analysis and popular science explanations, and clearly
stating that it does not replace professional clinical diagnosis.

The system supports desktop clients (Electron, Windows x86-64 and macOS arm64)
and web clients, providing functions such as registration and login, creation of
diagnostic sessions, tongue image upload, automated analysis pipeline (YOLOv5
localization → SAM segmentation → SE-ResNet50 classification →

four-dimensional feature vector generation), local LLM (invoking deepseek-r1-14b
via Ollama) to generate readable diagnostic reports and continuous conversations, as
well as persistence and retrieval of historical sessions and chat records.

The backend uses FastAPI as its core, adopts JWT authentication and TLS encrypted
transmission (terminated by Nginx/Caddy), uses SQLite as the database and abstracts
it through SQLAlchemy to support future migrations; the public network entry
implements a secure access link through reverse proxy and FRP intranet penetration.
It includes basic exception handling and retry mechanisms, end-to-end performance
optimization, basic front-end interaction experience and status prompts, as well as a
pluggable architecture design for algorithm modules.

Clinical diagnosis and treatment recommendations, mobile native applications,
video/multi-frame tongue image analysis, real-world medical data networking and
third-party medical system integration, doctor work flow management, fee settlement
and risk control, strong compliance review and medical device registration, as well as
high-level privacy enhancement technologies (such as FL and differential privacy, to
be further enhanced in the future) are explicitly excluded from the scope.

1.5 Technologies and Tools Used

Frontend: Electron, Vue3, Element Plus, Tailwind, Pinia, Axios
Backend: FastAPI, Uvicorn, Pydantic, SQLAlchemy, SQLite
AI Model Inference: PyTorch, YOLOv5, SAM, SE-ResNet, Ollama,

deepseek-r1-14b
Operation and Maintenance: Nginx/Caddy, FRP, Docker
Testing: pytest, Cypress, Apifox, Postman
Development and Collaboration: Git, GitHub, Jenkins

9

Part02: Requirement Documents

This document aims to clearly define the functional and non-functional requirements
of the Paradox AI Intelligent Tongue Diagnosis System. The system is a desktop
application that integrates traditional Chinese medicine (TCM), deep learning
techniques, and large language models (LLMs), and is designed to provide users with
a convenient and intelligent preliminary tongue-based health assessment tool.

2.1 Functional Requirements

 Use Case Overview and Participants:
■ Main Participants: User (End User)
■ System Participants: Frontend Client (Electron/Web), Backend Service

(FastAPI), Authentication Service (JWT/Refresh Token), Model Pipeline (YOLO→

SAM → SE-ResNet), LLM Service (Ollama/deepseek-r1-14b), Database
(SQLite/SQLAlchemy), Reverse Proxy (Nginx/Caddy)

 Use Case List:
 Register Account (FR-UAM-01)
 Login Account (FR-UAM-02)
 Create Diagnostic Session (FR-CORE-01)
 Upload tongue image (FR-CORE-02)
Automatic Tongue Image Analysis (FR-CORE-03)
 Generate and display the diagnostic report (FR-CORE-04)
 Continuous conversation within session (FR-CORE-05)
 Historical Conversation List Display (FR-HIST-01)
 View historical conversation details (FR-HIST-02)

2.1.1 UserAccount Management (FR-UAM)

2.1.1.1 FR-UAM-01: User Registration

 Participants: User, Backend Service, Database, Reverse Proxy
 Precondition: The user has opened the Client and can access the registration page;
the network is available.
 Trigger condition: User clicks "Register" and submits email and password

Main success scenario:
①The front end validates the email format and password complexity (minimum

length, character requirements)
②The front end calls POST /api/user/register to submit registration information.

10

③The backend checks that the email has not been registered, performs password
salted hashing, and persists the user.

④The backend returns registration success.
⑤The front end navigates to the login page and prompts "Registration successful,

please log in".

 Exception/Alternative Scenarios:
①A1 Email format is invalid: The front end blocks submission and prompts

"Email format error"
②A2 Password does not meet complexity requirements: Prompt "Password is too

simple/insufficient length"
③ A3 email has been registered: the backend returns 101, and the frontend

prompts "Email has been registered"
④A4 Network/Service Exception: Displays "Service is temporarily unavailable,

please try again later"

 Postcondition: A new user record is added to the database; automatic login is
disabled; the user is pending login.

2.1.1.2 FR-UAM-02: User Login

 Participants: User, Backend Service, Database, Authentication Service, Reverse
Proxy
 Precondition: The user has completed registration; the network is available.
 Trigger condition: The user submits an email address and password on the login
page.

Main success scenario:
①The front end calls PUT /api/user/login to submit credentials.
②The backend verifies that the email exists and the password matches.
③The backend issues short-lived Access Tokens and long-lived Refresh Tokens.
④The front end saves the Token (secure storage) and redirects to the home page.

 Exception/Alternative Scenarios:
① B1 Email or password error: The backend returns 102, and the frontend

prompts "Email or password is incorrect"
②B2 account does not exist: Prompt "Account not registered"
③B3 Network or Service Exception: Prompt "Login failed, please try again later"

 Postcondition: Session established, subsequent requests carry Bearer Token; login
state persisted

11

2.1.2 Core process of intelligent tongue diagnosis (FR-CORE)

2.1.2.1 FR-CORE-01: Initiate a diagnostic session

 Participants: User, Backend Service, Database, Reverse Proxy
 Precondition: The user has logged in; enter the diagnostic page.
 Trigger condition: The user enters the record name and clicks "Add".

Main success scenario:
①Front-end verification ensures the name is not empty
②The front end calls POST /api/model/session
③The backend creates a new session for the user, generates a sessionId, and

persists the session metadata.
④The front end inserts a new record into the left-side conversation list and sets it

as the active conversation.

 Exception/Alternative Scenarios:
①C1 name is empty: prompt "Please enter the record name"
②C2 Token Expired: Trigger Test Case 10 (Token Refresh), and if the refresh

fails, return to the login page
③C3 service exception/database error: Prompted with "Failed to create session"

 Postcondition: A new session is added to the database; the front end activates the
session and awaits image upload.

2.1.2.2 FR-CORE-02: Tongue image upload

 Participants: User, Frontend, Backend Service, Reverse Proxy
 Precondition: The user has logged in and activated a session; there is a picture file
to be uploaded.
 Trigger condition: The user selects a file or drags an image in the upload area

Main success scenario:
①Front-end verifies file type and size (jpg/png, size limit)
② The front end submits file_data, name, and user_input to POST

/api/model/session via multipart/form-data.
③ The reverse proxy forwards requests, the backend receives and stores the

image path, and marks the session as entering the "analyzing" state.
④The front-end displays "Uploading..." and then switches to the "Analyzing..."

state.

 Exception/Alternative Scenarios:

12

①D1 Illegal file type/too large: The front end blocks submission and prompts
"Only jpg/png are supported, with a size not exceeding 50MB"

②D2 upload interrupted or network anomaly: Prompt "Upload failed, click to
retry"

③D3 Token Expired: Use Refresh Token to refresh the token; if it fails, return to
the login page.

 Postcondition: The image is successfully stored and triggers the analysis process;
the session content records the image metadata.

2.1.2.3 FR-CORE-03: Automated tongue image analysis

 Participants: Backend Service, Model Pipeline (YOLO → SAM → SE-ResNet),
Database
 Precondition: Image upload is successful; session is in the "Analyzing" state.
 Trigger condition: The backend receives the upload completion event or queue
task.

Main success scenario:
①Backend starts an asynchronous task: YOLO locates the tongue body bounding

box
②Based on the positioning area, call SAM for precise segmentation to obtain the

tongue mask.
③ Use SE-ResNet50 to classify the segmented tongue images and generate

four-dimensional feature vectors.
④Write ModelResults (feature vector, version, Confidence Level), and update the

session status to "Analysis Completed - Pending Report"
⑤Notify the front end or obtain the progress through front-end polling.

 Exception/Alternative Scenarios:
①E1 Tongue not detected/Confidence Level too low: Return "Poor image quality

or tongue not detected", recommend retaking the photo and allow retry
②E2 Model Service Unavailable/Insufficient GPU: Log the error and prompt

"Analysis service is busy, please try again later"
③E3 data processing exception: Log the record and error code, and the front end

prompts failure

 Postcondition: The database saves the analysis results and status; if successful, it
proceeds to the report generation process.

2.1.2.4 FR-CORE-04: Generate and display diagnostic reports

 Participants: Backend Service, LLM Service, Database, Frontend
 Precondition: Analyze the generated four-dimensional feature vector; LLM

13

service is available
 Trigger condition: The backend calls the LLM after successful analysis; or the
frontend requests report generation.

Main success scenario:
①The backend passes the feature vector and necessary context into the LLM

(Ollama deepseek-r1-14b).
② LLM generates popular tongue image diagnosis explanations and relevant

traditional Chinese medicine knowledge.
③The backend returns to the front-end dialog box in streaming mode (character

by character/paragraph by paragraph).
④ The backend and frontend simultaneously persist the report as a session

message.

 Exception/Alternative Scenario:
①F1 LLM unavailable/timeout: Return the fallback message "Unable to generate

report at the moment, please try again later" and retain the analysis results
②F2 report generation failed: record the error and prompt; allow regeneration
③F3 Token Expired: Use Refresh Token to Refresh Token

 Postcondition: Report messages are stored in Messages; session status is updated
to "Report Generated".

2.1.2.5 FR-CORE-05: Continuous conversation and context understanding

 Participants: User, Frontend, Backend Service, LLM Service, Database
 Precondition: The user is logged in; the session exists and has at least a report or a
feature vector; the LLM is available.
 Trigger condition: The user enters a question in the dialog box and clicks Send.

Main success scenario:
①The front end calls POST /api/model/session/{sessionId} to submit user

input.
②Backend aggregation context: session historical messages + feature vectors
③Call the LLM to generate answers and return them in a streaming manner
④The front end displays "AI is typing..." and shows it character by character.
⑤Backend and frontend persistent Q&Amessages

 Exception/Alternative Scenario:
①G1 LLM Timeout/Busy: Prompt "AI is busy, please try again later"
②G2 context is too long: Backend executes message digest/truncation strategy

and continues generation
③G3 network anomaly: Prompt and allow resending
④G4 Token Expired: Use Refresh Token to Refresh Token

14

 Postcondition: New messages are written to the database; session context is
updated

2.1.3 Diagnostic History Management (FR-HIST)

2.1.3.1 FR-HIST-01: Historical record display

 Participants: User, Frontend, Backend Service, Database
 Precondition: The user has logged in; session records exist.
 Trigger condition: User enters the diagnostic page or clicks "History"

Main success scenario:
①The front end calls GET /api/model/session
② The backend returns the session list (session_id, name, created_at) in

descending order of time.
③The front end renders in the left list, with the latest at the top.

 Exception/Alternative Scenario:
①H1 No Conversation Record: Displays Empty State and Guidance Text
②H2 network/service exception: Prompt "Failed to obtain session"
③H3 Token Expired: Use Refresh Token to Refresh Token

 Postcondition: No data change; list status has been updated

2.1.3.2 FR-HIST-02: View history

 Participants: User, Frontend, Backend Service, Database
 Precondition: The user has logged in; a conversation has been selected.
 Trigger condition: The user clicks on a conversation record.

Main success scenario:
①The front end calls GET /api/model/record/{sessionId}
②The backend returns the complete message history of the session (including

images, reports, and Q&A).
③ The front end renders the conversation content and allows scrolling for

viewing.

 Exception/Alternative Scenario:
①I1 session does not exist or has been deleted: prompt "Session does not exist"
②I2 data acquisition failed: prompt and allow retry
③I3 Token Expired: Use Refresh Token to Refresh Token

15

 Postcondition: No new data; the front end highlights the current session and is
ready to continue the conversation.

2.2 Non-functional Requirements

2.2.1 Performance requirements (NFR-PERF)

2.2.1.1 NFR-PERF-01: Response time

①The response time for regular UI operations (page navigation, button clicks,
etc.) should be less than 500 milliseconds.

②The response time of the user login/registration verification process should be
less than 2 seconds.

③The end-to-end processing time from when a user uploads an image to when
the AI starts returning the first analysis report should be controlled within
approximately 40 seconds.

④For subsequent AI conversation responses, the time from when the user sends a
question to when the AI starts returning an answer should be less than 10 seconds.

2.2.2 Availability requirements (NFR-USAB)

2.2.2.1 NFR-USAB-01: Usability

①The system interface should be simple and intuitive, conforming to the user
habits of mainstream desktop applications.

②The operation paths of all core functions should be clear and straightforward,
allowing new users to complete a full tongue diagnosis process without training.

③ The system should provide clear status indicators, such as "Uploading...",
"Analyzing...", "AI is typing...", etc.

2.2.3 Reliability andAvailability (NFR-REL/AV)

2.2.3.1 NFR-REL-01: System stability

①Under normal operation, the system should be able to run stably for a long time
without crashing or exiting unexpectedly.

②The availability of core analysis services should reach 99% to ensure that user
requests can be successfully processed.

16

2.2.3.2 NFR-REL-02: High Availability Entry

①The public network access entry of the system should adopt a primary-backup
(Nginx/Caddy) reverse proxy mechanism to ensure that services remain available in
the event of a primary node failure.

2.2.4 Compatibility requirements (NFR-COMP)

2.2.4.1 NFR-COMP-01: Client Compatibility

①The system shall provide a desktop client packaged based on Electron and
ensure compatible operation on the following platforms:

■ Windows (x86-64)
■ macOS (arm64)

② Web applications should behave consistently across mainstream modern
browsers, including but not limited to:

■ Google Chrome (and other Chromium-based browsers)
■ Safari (WebKit Kernel)

2.2.5 Security requirements (NFR-SEC)

2.2.5.1 NFR-SEC-01: Authentication and Authorization

①All API interfaces that require user identity authentication must be protected by
a valid JWT.

②The system should be able to correctly handle the issuance, verification, and
expiration logic of Tokens.

2.2.5.2 NFR-SEC-02: Data transmission security

①All communication between the Client and the server must be encrypted via
TLS to ensure the confidentiality and integrity of data during transmission. The
reverse proxy layer (Nginx/Caddy) is responsible for TLS termination.

2.2.5.3 NFR-SEC-03: Data persistence

①Sensitive data such as user account information, diagnostic records, and chat
history must be persistently stored in the backend SQLite database.

17

2.2.6 Maintainability and Scalability (NFR-MAINT/EXT)

2.2.6.1 NFR-MAINT-01: Modularization architecture

①The system must adhere to a clear MVC layered architecture to ensure low
coupling between the view layer, the control layer, and the model layer.

②Code should adhere to good programming practices, and key modules must
have necessary comments and documentation.

2.2.6.2 NFR-EXT-01: The algorithm module is pluggable

①The system architecture should support the replacement or upgrade of core
algorithm components (YOLO, SAM, ResNet+SE, LLM) without affecting other
business logic. For example, in the future, it will be convenient to replace them with a
segmentation model with better performance or a more powerful LLM.

2.2.6.3 NFR-EXT-02: Database is migratable

①The data access layer should be abstracted through ORM (SQLAlchemy) to
ensure that the underlying database can be smoothly migrated from SQLite to other
relational databases (such as PostgreSQL, MySQL) in the future.

18

Part03: Software Architecture

3.1 System High-Level Architecture Diagram

This application adopts the MVC architecture, with the overall structure divided into
the view layer, control layer, and model layer, and the front-end and back-end
connection is achieved through Nginx reverse proxy.

Next, we will provide a detailed introduction to our High-Level Architecture based on
Picture 3-1.

The access end of the View layer supports Chrome based on the Chromium kernel,
Safari based on the WebKit kernel, and desktop clients based on Electron (Windows
x86-64 and macOS arm64). The UI layer uses Element Plus and Tailwind UI to build
the interface. The front-end application is based on Vue3, using Pinia for global state
management, Vue Router for routing management, and Axios for HTTP
communication with the back-end; all front-end requests are routed and forwarded by
Nginx.

The Controller layer consists of routing controllers (User Controller, Model Controller,
Ollama Controller) and two types of business services: Authentication Service
completes login authorization and token verification through the JWT Token Manager;
Algorithm Service includes a deep learning pipeline for tongue image analysis, first
using YOLO for tongue position localization, then using SAM for tongue body
segmentation, followed by using ResNet+SE to extract features to form a
four-dimensional output vector, which is uniformly scheduled by the controller and
can be returned to the front end or used as input for subsequent inference. The Large
Model Service encapsulates the call to the local large language model
(deepseek-r1-14b) through the Ollama API Manager, providing inference capabilities
for analysis, interpretation, and dialogue.

The Model layer implements data persistence and domain modeling, uses Pydantic for
data model and mapping, uses SQLAlchemy to manage database sessions, and uses
SQLite3 as the underlying storage; the controller interacts with the ORM to complete
the reading and writing of user, model, and task data.

19

Picture 3-1: The High-Level Architecture Diagram

The main data flow of the application is shown in the Picture 3-2. The entire process
starts with the Client (which can be an Electron-based desktop application or a web
application), through which users initiate requests. These requests first pass through
Nginx/Caddy, a high-performance web server or reverse proxy responsible for

20

handling client connections, load balancing, SSL termination, and serving static
content, thereby enhancing the reliability and security of the system.

Next, the system introduced the frps (FRP Server) and frpc (FRP Client) components.
This is commonly used to implement intranet penetration or tunnel proxy, allowing
external Nginx/Caddy to securely communicate with the FastAPI service that may be
deployed in a Virtual Private Cloud or behind a firewall. frps, as the server side,
receives requests from Nginx/Caddy and forwards them to the FastAPI service via the
frpc Client.

The FastAPI service is the core backend service of the system, handling business
logic and API requests. From here, data enters a cyclic processing phase: the FastAPI
service triggers Back-end data processing, which may involve data cleaning,
transformation, or preprocessing. The processed data is then sent to the Inference
subsystem, the intelligent core of the system, which uses frameworks such as PyTorch
or Ollama to perform inference tasks of artificial intelligence models, such as image
recognition, natural language processing, etc. The inference results will further go
through the Analysis of AI model phase for post-processing, interpretation, or
aggregation. Finally, these analysis results are persistently stored in the SQLite
database, a lightweight embedded relational database commonly used for local data
storage or small applications. This cycle ensures a closed loop of data processing, AI
inference, and result analysis, with the final results stored for potential subsequent
display or further business logic.

Picture 3-2: Data Flow Diagram of the Application

The data flow of the application's core algorithm is shown in the figure below. The
entire process begins with the FastAPI Backend Service, which serves as the core
business logic and API interface, responsible for receiving and coordinating
subsequent image processing and AI analysis tasks. First, the system performs Tongue
Image Input, i.e., receives the user's tongue image. Next, the image enters the first AI
processing stage: YOLO Image Positioning, which uses the YOLO (You Only Look
Once) Object Detection model to identify and precisely locate the tongue region in the
image, preparing for subsequent analysis. Immediately following is SAM Image
Segmentation, which uses the SAM (Segment Anything Model) to perform
fine-grained image segmentation on the located tongue, thereby accurately separating
the tongue from the background and ensuring that subsequent analysis focuses only
on the tongue itself.

21

The segmented tongue image is then fed into the ResNet-SE Classification model for
classification. ResNet-SE, a powerful deep learning network, is used at this stage to
perform high-level recognition and classification of the tongue's visual features (such
as color, texture, shape, etc.). The classification results or their internal feature
representations are then used to Provide the Eigenvectors, which usually means
extracting the most representative feature vectors of the image. These vectors can
serve as high-dimensional data to more comprehensively describe the subtle features
of the tongue.

These extracted feature vectors then enter the LLM Analysis (Large Language Model
Analysis) stage. Here, the LLM may combine all previous visual analysis results to
conduct deeper comprehensive understanding, inference, or generate diagnostic
reports. The LLM can transform the complex outputs of AI models into
human-readable and meaningful text descriptions or recommendations. Finally, the
results of LLM analysis will be output in real-time or in batches via Stream output.

These output data will be sent to two destinations simultaneously: a portion of the
data is persistently stored in the SQLite database for recording, subsequent querying,
or offline analysis; the other portion of the data is transmitted back to the Client in
real-time for users to view or further interact with, thus completing the closed loop
from image analysis to result presentation.

Picture 3-3: Data Flow Diagram of the Core Algorithm

22

3.2 UMLDiagrams (4+1 View)

3.2.1 The Scenario View (User Interface View)

Picture 3-3: The Use Case Diagram

23

3.2.2 The Logical View

3.2.2.1 Sequence Diagram

Picture 3-4: Sequence diagram for Automated tongue image analysis

24

Picture 3-5: Sequence diagram for chating

25

Picture 3-6: Sequence diagram for Login

Picture 3-7: Sequence diagram for Register

26

3.2.2.2 Class Diagram

Picture 3-8: The Class Diagram

27

3.2.3 The Development View

Picture 3-9: The Package Diagram

28

3.2.4 The Process View

Picture 3-9: The Activity Diagram

29

3.2.5 The Physical View

Picture 3-10: The Deployment Diagram

3.3 Database Design / ER Diagram

To effectively support the above system functions, especially user management,
session communication, and tongue image analysis data storage, the database adopts
the following relational structure:

 User Table:
①id (integer, primary key): Unique Device Identifier of the user.
②email (varchar(255)): The user's email address, typically used for login and

identity verification.
③ password (varchar(255)): The user's password, usually stored as an

encrypted hash value to ensure security.
④This table serves as the basis for all user-related data.

 chatSession Table:
①id (integer, primary key): Unique Device Identifier of the chat session.
② user_id (int, foreign key): Associated with the id in the User table,

indicating which user this conversation belongs to. A user can have multiple chat
conversations.

③tittle (text): The title or subject of a conversation.

 chatRecord Table:
①id (integer, primary key): Unique Device Identifier of the chat record.
②session_id (int, foreign key): Associated with the id in the chatSession

table, indicating which chat session this record belongs to. A session can contain
multiple chat records.

③content (text): The specific content of the chat message.
④create_at (int): Timestamp of message creation.
⑤role (int): Identifies the role of the message sender (e.g., user or AI).

 TongueAnalysis Table:
① This table stores various structured diagnostic indicators and feature data

obtained after the AI model analyzes the user's tongue image, id (integer, primary

30

key): Unique Device Identifier for tongue image analysis records.
② user_id (int, foreign key): Associated with the id in the User table,

indicating which user this analysis record belongs to. A user can have multiple tongue
image analysis records.

③img_src (varchar(255)): Storage path or URL of the original tongue image.
④tongue_color (int): Analysis result of tongue color (possibly corresponding

to a coded value).
⑤coating_color (int): The analysis result of the tongue coating color.
⑥tongue_thickness (int): Analysis result of tongue thickness.
⑦rot_greasy (int): The analysis result of the degree of greasy tongue coating.
⑧state (int): Overall health status or other classification results.

Picture 3-11: ER Diagram of the Database

31

3.4 UI/UX Design

In UI/UX (User Interface and User Experience) design, we have adopted a strategy
led by developers, component-based, and fully leveraging mature front-end
frameworks to achieve rapid development, maintain visual consistency, and ensure a
good user experience. The front-end application interface is built on Element Plus and
Tailwind UI:

We have chosen Element Plus as the core Vue.js User Interface (UI) component
library, which provides a large number of pre-built, highly encapsulated UI
components (such as buttons, forms, tables, navigation, dialogs, etc.). Element Plus
adheres to a rigorous and mature design system and visual specification, which
inherently brings visual consistency, interaction consistency, and component
accessibility to our application.

We have integrated Tailwind UI to build and beautify specific layouts, page sections,
or custom components that Element Plus cannot directly cover in the application.
Tailwind UI is a collection of component examples built on Utility-first Tailwind CSS,
which gives front-end developers great flexibility to quickly build beautiful, highly
responsive, and modern interface elements by combining atomic CSS classes. This
allows us to maintain the consistency of Element Plus core components while having
more precise control over layout, spacing, typography, and color scheme.

Picture 3-12: UI/UX Design of the Home Page

32

Part04: API Documents

4.1 Basic Format

 Universal Response Format

JSON

{

"code": 0,

"message": "operation success",

"data": {}

}

 code: Response Status Code
message: Response description information
 data: Specific response data4.2 User Management

4.2 User Management

4.2.1 User Registration

 Path: POST "/api/user/register"
 Description: New user registration
 Request body:

JSON

{

"email": "string",

"password": "string"

}

 Response body:

JSON

{

"code": 0,

"message": "operation success",

"data": null

33

}

 Status Code:
■ 0: Registration successful
■ 101: Registered
■ Other: Operation failed

4.2.2 User Login

 Path: PUT "/api/user/login"
 Description: User Login
 Form parameters:

Parameter name Parameter meaning Data type

email User email string

password User password string

 Response body:

JSON

{

"code": 0,

"message": "operation success",

"data": {

"token": "string"

}

}

 Status Code:
■ 0: Login successful
■ 102: Incorrect password
■ Other: Operation failed

4.2.3 Get User Info

 Path: GET "/api/user/info"
 Description: Get current user information
Authentication: Bearer Token

34

 Request Header:
■ Authorization: Bearer <token>

 Response body:

JSON

{

"code": 0,

"message": "operation success",

"data": {

"ID": "int",

"email": "string"

}

}

4.2.4 Get User Record

 Path: GET "/api/user/record"
 Description: Retrieve user's tongue diagnosis history records
Authentication: Bearer Token
 Request Header:

■ Authorization: Bearer <token>
 Response body:

JSON

{

"code": 0,

"message": "operation success",

"data": [

{

"ID": "int",

"user_ID": "int",

"img_src": "string",

"state": "int",

"result": {

"tongue_color": "int",

"coating_color": "int",

"tongue_thickness": "int",

"rot_greasy": "int"

}

35

}

]

}

4.3 Tongue Diagnosis Analysis

4.3.1 Upload image and analysis

 Path: POST "/api/model/session"
 Description: Upload tongue diagnosis images for AI analysis and start a new
session
Authentication: Bearer Token
 Request Header:

■ Authorization: Bearer <token>
 Form parameters:

Parameter name Parameter meaning Data type

file_data picture file multipart/form-data

user_input User input text string

name session name string

 Response body:

JSON

{

"code": 0,

"message": "operation success",

"data": {

"sessionId": "string"

}

}

4.3.2 Send message to a session

 Path: POST "/api/model/session/{sessionId}"

36

 Description: Send a message in the specified session and obtain the AI's response
Authentication: Bearer Token
 Request Header:

■ Authorization: Bearer <token>
 Path parameters:

Parameter name Parameter meaning Data type

sessionId Session ID string

 Request body:

JSON

{

"input": "string"

}

 Response body:

JSON

{

"code": 0,

"message": "operation success",

"data": null

}

4.3.3 Obtain conversation chat records

 Path: GET "/api/model/record/{sessionid}"
 Description: Retrieve the complete chat history of a specified conversation
Authentication: Bearer Token
 Request Header:

■ Authorization: Bearer <token>
 Path parameters:

Parameter name Parameter meaning Data type

sessionId Session ID string

 Response body:

37

JSON

{

"code": 0,

"message": "operation success",

"data": {

"records": [

{

"content": "string",

"create_at": 1678886400000,

"role": 1

}

]

}

}

role: 1 represents user, 2 represents AI assistant

4.3.4 Obtain all conversation lists

 Path: "GET /api/model/session"
 Description: Get all session lists of the current user
Authentication: Bearer Token
 Request Header:

■ Authorization: Bearer <token>
 Response body:

JSON

{

"code": 0,

"message": "operation success",

"data": [

{

"session_id": 1,

"name": "string"

}

]

}

38

 Response Code Explanation:
■ 0: Operation successful
■ 101: User not found or operation failed
■ 102: Failed to obtain chat history
■ 201: Operation Failed

39

Part05: Software Implementation

5.1 Development Approach

5.1.1 Front-end Application

The core of the front-end application is built on the Electron framework, which
enables the use of web technologies (HTML, CSS, and JavaScript) to develop a fully
functional desktop application that can be compiled and packaged for major operating
systems such as Windows, macOS, and Linux. This design choice not only unifies the
user experience across different platforms, but also grants the application capabilities
beyond those of traditional browsers, such as access to the local file system for storing
high-resolution tongue images and sending system-level notifications.

Within the Electron container, Vue 3.js is selected as the primary front-end framework.
Vue 3, with its powerful Composition API and highly efficient reactivity system,
significantly improves code readability and maintainability. Its component-based
development paradigm allows complex user interfaces to be decomposed into
independent and reusable units.

To achieve both aesthetic quality and development efficiency in UI design, a hybrid
approach combining Element Plus and Tailwind UI is adopted. Element Plus provides
a comprehensive set of well-designed foundational UI components, accelerating the
development of standard interface elements. Tailwind UI, as an atomic CSS
framework, offers great flexibility and efficiency for highly customized layouts and
fine-grained visual effects, while avoiding the complexity and maintenance issues
associated with extensive CSS overrides.

For application state management, Pinia, the officially recommended solution within
the Vue ecosystem, is introduced. It provides a type-safe and lightweight centralized
store for managing global states such as user authentication status and application
configuration, ensuring a clear, predictable, and debuggable data flow. For front-end
and back-end communication, Axios is used as the HTTP client. Its powerful request
and response interceptor mechanisms are leveraged to uniformly handle
authentication token injection and API error responses, resulting in a more robust and
elegant networking layer.

5.1.2 Back-end Application

The back-end service is built on FastAPI, a high-performance Python web framework.
The primary reason for choosing FastAPI lies in its native asynchronous support,

40

which allows it to efficiently handle high-concurrency requests. This capability is
particularly critical in scenarios where a large number of users may upload tongue
images for analysis simultaneously. In addition, FastAPI is deeply integrated with
Pydantic, enabling automatic data validation and the generation of interactive API
documentation, which significantly improves development efficiency and interface
reliability.

As a traditional Chinese medicine tongue diagnosis application, the core functionality
lies in image analysis algorithms. The back-end service is seamlessly integrated with
neural network models developed using PyTorch. Acting as a lightweight and efficient
interface layer, FastAPI is able to invoke PyTorch models with minimal latency and
quickly respond to analysis requests from the front end, thereby providing users with
a smooth and responsive experience.

For data persistence, SQLite is adopted as the database engine. For desktop
applications, SQLite is an ideal choice due to its lightweight, serverless, and
embedded nature. It exists directly as a file and does not require separate deployment
or maintenance of a database service, greatly simplifying application distribution and
deployment. To enable efficient and secure interaction with the database, the
SQLAlchemy Object-Relational Mapping (ORM) library is used. It abstracts database
tables into Python objects, allowing developers to manipulate data in an
object-oriented manner, avoiding complex native SQL queries while ensuring
robustness in data operations.

5.1.3 Security System

Security is treated as a core design principle of the system. A defense-in-depth
security architecture is constructed to cover the entire pipeline of data transmission,
user authentication, and data storage, ensuring the highest level of protection for user
data and privacy.

First, at the data transmission layer, all communications between the client and the
server are strictly enforced to use the HTTPS (HyperText Transfer Protocol Secure)
protocol. By deploying SSL/TLS certificates, the communication channel is encrypted,
effectively preventing data from being intercepted or tampered with during
transmission. This serves as a fundamental safeguard against Man-in-the-Middle
attacks. Whether it is user authentication, tongue image uploads, or the return of
analysis results, all data flows securely through encrypted channels.

Second, for user authentication and authorization, a stateless mechanism based on
Access Tokens and Refresh Tokens is implemented. Upon successful login, the server
issues a short-lived Access Token and a long-lived Refresh Token. The Access Token
acts as the credential for accessing protected APIs, and its short validity period
significantly reduces security risks in the event of token leakage. The Refresh Token

41

is used to automatically and silently obtain a new Access Token after the original one
expires. This mechanism effectively balances strong security with a smooth user
experience, eliminating the need for frequent re-authentication and enabling seamless
token refresh.

Finally, at the data storage layer, highly sensitive information such as user passwords
is strictly protected through irreversible processing. Industry-standard SHA256
hashing combined with salting is employed, ensuring that user passwords are never
stored in plaintext form. Even in extreme cases where the database is compromised,
attackers cannot directly recover the original passwords from the stored hash values,
providing a final and robust line of defense for user account security.

Through the combined use of HTTPS-encrypted communication, token-based
authentication and authorization, and salted hash storage, a comprehensive security
loop is established from the client to the server and from the network to the database,
ensuring data confidentiality, integrity, and reliable authentication.

5.2 Key Algorithms andAI technologies

5.2.1 Data Pre-processing

5.2.1.1 Semantic Segmentation of Tongue Images

In a tongue image, pixels unrelated to the tongue body are inevitably present and act
as noise. To accurately extract meaningful tongue features, a data preprocessing stage
is introduced to remove these interfering elements.

First, the YOLOv5 object detection model is used to locate the position of the tongue
within the image. As an open-source object detection framework, YOLOv5 allows us
to isolate the primary tongue region, reduce background interference, and filter out
abnormal or low-quality images. A custom annotated object detection dataset is used
to train the YOLOv5 model.

Next, semantic segmentation is performed on the detected tongue region using the
Segment Anything Model (SAM). SAM is a large-scale foundational semantic
segmentation model that operates based on prompts and can generalize effectively to
a wide range of downstream segmentation tasks. The output bounding box generated
by YOLOv5 serves as the prompt input for SAM, enabling accurate tongue
segmentation and extraction.

At this stage, the data preprocessing pipeline is essentially complete, with most
interfering factors removed. By processing the original dataset in this manner, a new

42

dataset containing only isolated tongue regions is obtained, which serves as the input
for subsequent classification tasks.

5.2.1.2 Dataset Normalization

Mean–variance normalization is applied to the dataset, using the global mean and
variance computed over the entire dataset. This method preserves relative distances
between data points while transforming the data distribution to have a mean of 0 and a
variance of 1. Such normalization accelerates model convergence, improves training
efficiency, and enhances overall model performance.

5.2.1.3 Dataset Labeling

In this project, classification features are divided into four main dimensions: tongue
color, tongue coating color, thickness, and greasiness. Tongue color is categorized into
pale white, light red, red, crimson, and purplish. Tongue coating color includes white,
yellow, and gray-black categories, while thickness and greasiness are treated as binary
classification tasks. All dataset labels are recorded in JSON format for structured
storage and processing.

5.2.1.4 Data Augmentation

To address the issue of class imbalance, data augmentation is employed to increase
the number of minority samples. Common data augmentation techniques include
random rotation, cropping, and translation. Considering that cropping and translation
may distort the fundamental structure of the tongue, only rotation-based augmentation
is applied in this work.

5.2.2 Classification Network Construction

5.2.2.1 Residual Network

The residual learning framework addresses the degradation problem that occurs in
very deep neural networks by introducing skip connections. By stacking residual
blocks with basic convolutional structures, a deep convolutional neural network can
be constructed. Within each residual block, a shortcut connection is introduced to
preserve identity mapping when the residual becomes zero, thereby ensuring stable
network performance. When the residual is non-zero, the network is able to learn
deeper and more expressive features. In this work, ResNet50 is adopted as the
backbone network for tongue image classification.

43

Picture 5-1: Core Structure of Residual Network

5.2.2.2 Squeeze-and-Excitation Network

The squeeze-and-excitation network is an attention-based model built upon the
Squeeze-and-Excitation (SE) module, which enhances feature representation by
explicitly modeling interdependencies among convolutional feature channels.
Through the Squeeze operation (global information embedding), global average
pooling is applied to compress each feature map into a 1×1×c1 \times 1 \times c1×
1× c feature vector, effectively capturing global context and alleviating channel
dependency issues. Subsequently, the Excitation operation (adaptive recalibration)
employs two fully connected layers: the channel dimension is first reduced and
activated using ReLU, then restored and activated using Sigmoid to generate
channel-wise attention weights. Finally, the Scale operation reweights the original
feature maps by applying these attention weights to each channel, producing the final
output features.

Picture 5-2: The Structure of Squeeze-and-excitation Network

5.2.2.3 The design of the Loss Function

We adopt the Symmetric Modified Cross-Entropy (SMCE) loss function, which can
been seen in (Formula 5.1). For tongue color classification tasks involving noisy
samples, this loss function effectively mitigates the impact of noise. SMCE is derived
by modifying the noise-robust Generalized Cross-Entropy (GCE) loss. The GCE loss
combines the symmetry property of MAE with the fast convergence characteristics of
CE. However, due to the influence of the dynamically adjusted parameter d, GCE
exhibits noise robustness only under certain conditions. By introducing ADD, SMCE

44

guarantees that, regardless of the value of d, there is always a symmetric loss
component that contributes to noise suppression.

����� = � ⋅ ���� + � ⋅ ����

= � ⋅
1 − � �|� �

�
+ � ⋅ �=1

� |� �|� − � �|� |�

�=1

�

�=1
� |� �|� − � � = �|� |��

(5.1)

5.2.2.4 Gradient Descent based on Momentum

In the gradient descent optimization process, we adopt momentum-based stochastic
gradient descent (SGD). During each update step, the optimizer retains the trend of
previous updates, which helps prevent the loss from being trapped in local optima.
Even in cases where the gradient becomes zero, the momentum term maintains a
movement tendency, enabling continued optimization progress.

5.2.2.5 Learning Rate Scheduling Algorithm

For the learning rate scheduling strategy, we adopt the Poly policy, in which the
learning rate decays as the number of training iterations increases. By adjusting the
exponential parameter power, the shape of the learning rate decay curve can be
flexibly controlled. When power is set to a value less than 1, the learning rate
decreases slowly at first and then more rapidly; when power is greater than 1, the
learning rate drops quickly in the early stages and then slows down. As the model loss
approaches convergence, using a smaller learning rate enables the model to more
effectively locate the optimal solution.

5.3 Development collaboration

We use Git and GitHub for collaborative development, with main serving as the stable
primary branch. Daily development work is carried out on a dev branch derived from
main, while bug fixes are handled through dedicated fix branches. All changes are
merged into main via Pull Requests, which facilitates changelog generation and
change tracking. For each release, a version tag is created on the main branch in
GitHub, forming clear version milestones and ensuring traceable version history.

A privately deployed Jenkins instance is responsible for CI/CD automation. Pushes to
main or Pull Request merge events trigger the Jenkins pipeline, which executes a
predefined workflow: checking out the relevant commit or merged result, installing
project dependencies, performing basic static checks and necessary unit tests to ensure
quality, and then building and packaging the application to generate distributable
artifacts. Upon completion, Jenkins archives the build outputs (such as installers,

45

compressed packages, or images) in an artifact repository or within Jenkins build
archives. Credentials and environment variables are securely injected through Jenkins’
credential management and parameterized configuration, ensuring that sensitive
information is not stored in the code repository.

When a build fails, Jenkins marks the build as failed and sends automatic notifications.
Developers can fix the issues and trigger a new build by pushing updates, or manually
retry the build within Jenkins when necessary. To facilitate rollback and comparison,
Jenkins retains artifacts and logs from several recent builds. When a release is
required, a tag is created on GitHub, which triggers a formal Jenkins build based on
that tag, producing versioned artifacts that are archived and released.

46

Part06: Software Testing

6.1 Test Strategy

The software testing strategy for this project takes "verifiable backend logic,
consistent interface contracts, end-to-end availability of the front end, and robust AI
pipelines" as its core objectives, and is carried out around four levels: unit, interface,
end-to-end, and model pipeline.

The backend uses pytest to write unit tests, covering key logic such as FastAPI routes
and services, JWT issuance and verification, SQLAlchemy data access, exceptions,
and boundary conditions. Mocking is widely used to isolate dependencies on
databases, model inference, and Ollama, ensuring the verification of input-output
contracts and error code consistency in a controlled environment.

The interface layer maintains API collections through Apifox, validates REST request
and response formats, authentication and token refresh, and multi-part form image
upload.

Frontend e2e testing uses Cypress to simulate real user paths in both Web and
Electron environments, covering core processes such as login, session creation and
status prompts, image upload and progress, report streaming display, history retrieval,
and continued conversation.

On the algorithm side, lightweight pipeline integration testing is conducted using
pytest to evaluate the cascade correctness, mask quality, and feature vector
consistency of YOLO localization, SAM segmentation, and SE-ResNet classification,
record the Confidence Level and version tags, and verify the failure fallback and retry
strategies.

The test environment covers backend Debian 12 (Python 3.9, Uvicorn/FastAPI),
client Windows x86-64 (Electron/Web), SQLite 3.35+, Ollama (deepseek-r1-14b),
and provides public network access through Nginx/Caddy and FRP;
The entire testing system is integrated into the Jenkins pipeline, which executes
dependency installation, Pytest, Apifox collection, Cypress execution, and report
archiving.

6.2 Test Cases & Results

Due to space limitations, we only provide one case for each type of test.

47

6.2.1 Front-end e2e testing

 Test code

JavaScript

it("Upload File Test", () => {

// Login

cy.visit('/');

cy.get('input[id="l_email"]').type("testuser@testuser.com");

cy.get('input[id="l_password"]').type("123456");

cy.get('button').contains("登录").click();

// Examination

cy.get('a').contains("进行检测").click();

cy.get('.el-upload__input').attachFile("657.jpg", {

subjectType: 'drag-n-drop'

})

})

 Test Results:
■ The reason for 401 is that when the page initializes, it will retrieve user

information, but at this time the user has not logged in yet, so the response to this
request is 401.

Picture 6-1: Test Result of e2e Testing

48

6.2.2 Interface Layer - Apifox Testing

 Test Case: A POST request to register a new user. It is configured to run in the
Development environment. The execution plan runs locally with 10 iterations and 5
threads, which means about 50 total requests will be sent concurrently.

Picture 6-2: Test Case of Interface Testing

 Test Results:

49

Picture 6-3: Test Result of Interface Testing

6.2.3 Backend unit testing

 Test case: Write unit tests for Authentication using pytest to verify whether the
authentication function is working properly.
 Test Results:

Bash

(TongueDiagnosisEN) PS F:\ParadoxAIStudio\TongueDiagnosisEN> python

-m pytest tests/test_authentication.py -v

== test

session starts

===

platform win32 -- Python 3.9.21, pytest-8.4.2, pluggy-1.5.0 --

E:\Anaconda\envs\TongueDiagnosisEN\python.exe

cachedir: .pytest_cache

rootdir: F:\ParadoxAIStudio\TongueDiagnosisEN

plugins: anyio-4.3.0

50

collected 9 items

tests/test_authentication.py::TestCreateAccessToken::test_create_a

ccess_token_with_expiration PASSED

[11%]

tests/test_authentication.py::TestCreateAccessToken::test_create_a

ccess_token_default_expiration PASSED

[22%]

tests/test_authentication.py::TestCreateAccessToken::test_create_a

ccess_token_additional_data PASSED

[33%]

tests/test_authentication.py::TestGetCurrentUser::test_get_current

_user_valid_token PASSED

[44%]

tests/test_authentication.py::TestGetCurrentUser::test_get_current

_user_invalid_token PASSED

[55%]

tests/test_authentication.py::TestGetCurrentUser::test_get_current

_user_expired_token PASSED

[66%]

tests/test_authentication.py::TestGetCurrentUser::test_get_current

_user_token_without_email PASSED

[77%]

tests/test_authentication.py::TestGetCurrentUser::test_get_current

_user_nonexistent_user PASSED

[88%]

tests/test_authentication.py::TestOAuth2Scheme::test_oauth2_scheme

_type PASSED

[100%]

=== 9 passed in

6.66s ==

6.3 AI Performance Test

We conducted a comparative analysis of four classical convolutional classification
networks, including AlexNet[19], Inception3[20], GoogleNet[21], VGG11[22]. The

51

models were evaluated on multi-class classification tasks across different
tongue-related features, such as tongue color, tongue coating color, thickness, and
greasiness, using the same dataset and identical hyperparameter settings to ensure a
fair comparison of model performance.

In terms of evaluation metrics, we introduce both F1 Score and Accuracy. Among
them, the F1 Score is defined as the harmonic mean of precision and recall, and it
provides a balanced measure of a model’s overall performance. Its calculation formula
is given as formula 6.1:

�1 = 2 ×
��

2�� + �� + ��
(6.1)

The method adopted in this project is SE_ResNet50.

6.3.1 Tongue color characteristics

Model F1 Score Acc

AlexNet 0.1558 0.6379

Inception3 0.2104 0.6195

GoogleNet 0.2858 0.6235

VGG11 0.1558 0.6379

SE_ResNet50 0.1578 0.6379

6.3.2 Tongue coating color characteristics

Model F1 Score Acc

AlexNet 0.3000 0.6779

Inception3 0.4143 0.6803

GoogleNet 0.5132 0.7218

52

VGG11 0.3127 0.6715

SE_ResNet50 0.4256 0.6779

6.3.3 Thickness of the tongue

Model F1 Score Acc

AlexNet 0.3965 0.5803

Inception3 0.5963 0.6467

GoogleNet 0.7286 0.7130

VGG11 0.3965 0.5803

SE_ResNet50 0.5969 0.6515

6.3.4 Greasy or slimy characteristics of the tongue

Model F1 Score Acc

AlexNet 0.5545 0.6531

Inception3 0.6528 0.6811

GoogleNet 0.6561 0.6914

VGG11 0.5929 0.6571

SE_ResNet50 0.6187 0.6803

6.3.5 Summary

Through comparative analysis, we found that the overall performance of our model is

53

relatively unsatisfactory. Among all evaluated features, GoogLeNet consistently
achieves strong performance, indicating that the current approach still has room for
optimization. In future improvements, selecting GoogLeNet as the classification
backbone represents a reasonable and promising direction.

At the same time, we observed that most models perform poorly on tongue color
classification, and exhibit relatively low F1 scores and accuracy on other features as
well. Therefore, in addition to considering the choice of model architecture, it is
necessary to examine potential issues within the dataset itself and to explore more
effective data preprocessing strategies in order to improve overall model performance.

54

Part07: Software Deployment and Operations

Management

7.1 Ops Technical Route

The core of the operations and maintenance (O&M) technical route of this project is
to construct a secure, stable, and efficient access path from the client to application
services within a private network by combining public reverse proxy and internal
network tunneling technologies.

The entire data flow begins at the user’s Electron client application. When a user
initiates a request, it is first routed to a reverse proxy layer deployed on a public server.
This layer serves as the unified entry point of the system and is configured in an
active–standby mode to ensure high availability. Nginx acts as the primary service,
handling daily traffic forwarding, load balancing, SSL termination, and certificate
management thanks to its excellent performance, thereby forming the first robust line
of defense for the application. Caddy, on the other hand, serves as the standby service.
Its automated HTTPS management capabilities make it an ideal failover option,
ensuring uninterrupted external service even when the primary service encounters
failures.

Unlike traditional architectures, this reverse proxy layer does not directly forward
requests to application servers exposed on the public network. Instead, traffic is
passed to a co-deployed FRP (Fast Reverse Proxy) server component (frps). In this
setup, FRP plays the critical role of a “tunnel hub”. Meanwhile, on the application
servers located within a private network (such as a corporate intranet or home
network), an FRP client (frpc) actively connects to the public frps upon startup and
establishes a stable, encrypted long-lived tunnel. As a result, once Nginx hands off
external requests to frps, frps can securely “push” these requests through the
pre-established tunnel to the internal frpc.
Ultimately, the requests reach the application service cluster securely isolated within
the private network. Upon receiving a request, frpc forwards it to the appropriate local
service instances. These include the back-end application instances responsible for
core business logic, as well as a separately deployed Ollama service instance
dedicated to handling computation-intensive large language model tasks. This service
decoupling design facilitates independent scaling and maintenance. Data persistence
required by the back-end application is provided by a tightly coupled SQLite database,
whose lightweight and embedded nature further reduces deployment and operational
complexity.

55

Picture 7-1: Application Deployment Structure

7.2 Software Deployment Process

7.2.1 Pre-requisite Requirements

 Conda ≥23.10.0
 Python 3.9.21
 SQLite 3.35+
 Node.js 20.0+

7.2.2 Configuration

7.2.2.1 Backend Configuration

Modify application/config/config.py to set backend parameters:
■ ACCESS_TOKEN_EXPIRE_MINUTES: Token expiration time in minutes
■ SECRET_KEY: Secret key for JWT token generation
■ ALGORITHMS: Algorithm used for JWT token encoding
■ IMG_PATH: Path to save uploaded tongue images
■ IMG_DB_PATH: Path stored in the database for tongue images
■ OLLAMA_PATH: Ollama API endpoint
■ SYSTEM_PROMPT: System prompt for LLM
■ LLM_NAME: Name of the LLM model to use in Ollama
■ APP_PORT: Port for backend server

 Default configuration:

Bash

ACCESS_TOKEN_EXPIRE_MINUTES: int = 60 * 24

SECRET_KEY: str = "f2e1f1b1c1a1"

ALGORITHMS: str = "HS256"

IMG_PATH: str = "frontend/public/tongue"

IMG_DB_PATH: str = "tongue"

OLLAMA_PATH: str = "http://localhost:11434/api/chat"

SYSTEM_PROMPT: str = "You are now an AI traditional Chinese medicine

56

doctor specializing in tongue diagnosis. At the very beginning, I will

show you four image features of the user's tongue. Please use your

knowledge of traditional Chinese medicine to give the user some

suggestions. Answer in English"

LLM_NAME: str = "deepseek-r1:14b"

APP_PORT: int = 5000

7.2.2.2 Frontend Configuration

Modify frontend/src/config/config.js to set frontend parameters:
■ ServerUrl: Backend server URL

 Default configuration:

JavaScript

export const settings = {

ServerUrl: 'https://paradoxai.markyan04.cn'

};

export default settings;

7.2.3 Application Setup

7.2.3.1 Backend Setup

 Default running port: 5000
 Before the following step, you need to install Ollama[https://ollama.com/download]
on the device which will run the backend application. Your Ollama service will
defaultly run on port 11434.

Bash

Clone repository

git clone

https://github.com/TonguePicture-SKaRD/TongueDiagnosis.git

cd TongueDiagnosis/application

Create environment

conda create -n tongueai python=3.9.21

conda activate tongueai

57

cd ..

pip install -r requirements.txt

Initialize database

sqlite3 AppDatabase.db < models/create_ChatRecord.sql # Creates 4

tables

sqlite3 AppDatabase.db < models/create_Session.sql # Creates 4

tables

sqlite3 AppDatabase.db < models/create_TongueAnalysis.sql # Creates

4 tables

sqlite3 AppDatabase.db < models/create_User.sql # Creates 4 tables

Make a directory for saving model weights

cd application

mkdir -p ./net/weights

Make a directory for tongue images saving

cd ../frontend/public

mkdir -p ./tongue

Download model weights (If the terminal cannot run, please manually

download the weight file, a total of 7)

wget -P ./net/weights/ \

"https://github.com/TonguePicture-SKaRD/TongueDiagnosis/releases/d

ownload/V1.0_Beta/rot_and_greasy.pth" \

"https://github.com/TonguePicture-SKaRD/TongueDiagnosis/releases/d

ownload/V1.0_Beta/thickness.pth" \

"https://github.com/TonguePicture-SKaRD/TongueDiagnosis/releases/d

ownload/V1.0_Beta/tongue_coat_color.pth" \

"https://github.com/TonguePicture-SKaRD/TongueDiagnosis/releases/d

ownload/V1.0_Beta/tongue_color.pth" \

"https://github.com/TonguePicture-SKaRD/TongueDiagnosis/releases/d

58

ownload/V1.0_Beta/unet.pth" \

"https://github.com/TonguePicture-SKaRD/TongueDiagnosis/releases/d

ownload/V1.0_Beta/yolov5.pt" \

"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.

pth"

Launch backend

cd..

python run.py

7.2.3.2 Frontend Setup

 Default running port (dev mode): 5173
 Default running port (preview mode): 4173
 Before starting, ensure a "tongue" folder exists in the "./public" directory (create if
missing)

Bash

Web Application

cd frontend

npm install

npm run build

npm run preview

Electron Desktop

npm run electron:build

npm run electron:start

Web browser (Chrome recommended)

npm run dev

 You can execute the command npm run electron:build to build the Windows
x86-64 installation application.

59

7.3 Frp Service Configuration

Our backend application uses the Frp service to achieve intranet penetration, exposing
the application from a personal server to public network services. First, we need to
configure the Frp server Frps on the public network Frp server. The frps.ini
configuration is as follows (for security purposes, I will hide some sensitive
information):

TOML

[common]

bind_port = 7****

token = ******************************

log_file = "/var/log/frp/frps.log"

log_level = "info"

log_max_days = 30

vhost_http_port = ****8

vhost_https_port = ****0

dashboard_port = ****1

dashboard_user = mark*****

dashboard_pwd = *********

[markyan04_jenkins_http_server_debian_1]

listen_port = 5****

[paradoxai_app_server_debian_1]

listen_port = 1****

After completing the server configuration, we need to configure the Frp Client Frpc
on the personal server. The frpc.ini configuration is as follows (for security purposes,
I will hide some sensitive information):

TOML

[common]

server_addr = ***.***.***.***

server_port = 7****

token = ******************************

[markyan04_jenkins_http_server_debian_1]

60

type = tcp

local_ip = 127.0.0.1

local_port = *****

remote_port = 5****

[paradoxai_app_server_debian_1]

type = tcp

local_ip = 127.0.0.1

local_port = *****

remote_port = 1****

In addition, I have configured frp as a systemd system service, enabling
comprehensive management via systemctl commands, for example:

Bash

systemctl start frp

systemctl stop frp

systemctl restart frp

systemctl enable frp

This configuration enables the frp service to start automatically with the system and
provides a standardized service management interface.

7.4 Nginx/Caddy Service Configuration

After completing intranet penetration, we need to configure Nginx reverse proxy for
the application and implement HTTPS secure access through an SSL certificate.
Below, we take Nginx, which serves as the main reverse proxy service, as an
example:

7.4.1 Preceding dependency download

Ensure that the system has installed the necessary dependencies:

Bash

sudo apt update

sudo apt install certbot python3-certbot-nginx

sudo apt install nginx

61

 certbot is used to automatically obtain and renew SSL certificates.
 python3-certbot-nginx provides an integration plugin for Nginx.
 nginx is the core component of reverse proxy services.

7.4.2 Obtaining SSLCertificate - Let's Encrypt

To obtain an SSL certificate using Let's Encrypt, the command is as follows:

Bash

sudo certbot certonly --nginx \

-d paradoxai.markyan04.cn \

--email your-email@example.com \

--agree-tos \

--non-interactive

7.4.3 Create the Nginx configuration file

Main configuration file
■ Ensure that /etc/nginx/nginx.conf contains the correct global

configuration (default settings can be retained).
 Domain name configuration file

■ Create the domain name configuration
■ /etc/nginx/sites-available/paradoxai.markyan04.cn

Bash

server {

listen 80;

server_name paradoxai.markyan04.cn;

return 301 https://$host$request_uri;

}

server {

listen 443 ssl http2;

server_name paradoxai.markyan04.cn;

ssl_certificate

/etc/letsencrypt/live/paradoxai.markyan04.cn/fullchain.pem;

ssl_certificate_key

62

/etc/letsencrypt/live/paradoxai.markyan04.cn/privkey.pem;

location / {

proxy_pass http://***.***.***.***:1****;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_set_header X-Forwarded-Proto $scheme;

}

}

 proxy_pass needs to be replaced with the actual intranet penetration service
address (e.g., http://frp-server-ip:frp-port).
 ssl_certificate and ssl_certificate_key point to the certificate path
generated by Let's Encrypt.
 The above configuration is not a good practice because this is just an application
demo, and I have only implemented the most basic configuration functions.

7.4.4 Start the site and test the configuration

Create a symbolic link to activate the configuration file:

Bash

sudo ln -s /etc/nginx/sites-available/paradoxai.markyan04.cn

/etc/nginx/sites-enabled/

Check if the configuration file has any syntax errors:

Bash

sudo nginx -t

If there are no errors, restart the Nginx service to apply the changes:

Bash

sudo systemctl reload nginx

After using reload instead of restart, the service will restart smoothly, avoiding
interrupting current connections.

63

7.4.5 Set up automatic renewal

Let's Encrypt certificates are valid for 90 days. Set up automatic renewal:

Bash

sudo crontab -e

Add the following content (at the end of the file)

Plain Text

0 12 * * * /usr/bin/certbot renew --quiet --nginx && systemctl reload

nginx

 The --quiet parameter avoids logging output during the renewal process.
 --nginx will automatically update the Nginx configuration file to adapt to the new
certificate.
After renewal, reload the configuration via systemctl reload nginx to ensure the
service is available.

7.5 Client Application Preparation

Users can directly obtain the installation package of our application via
https://download.markyan04.cn, or they can deploy the front-end application
themselves and package the desktop installation package. The specific installation
process is detailed in 9.1 Installation.

64

Part08: Project Management

8.1 Roles & Responsibilities

The division of responsibilities and interface collaboration is as follows:
 Yan Hongyu (Software Architecture Design and Project Framework
Construction)

■ Responsibilities: Overall system architecture and module boundaries;
definition of pluggable algorithm interfaces; back-end project skeleton and
configuration system; CI/CD and release strategy

■ Key Deliverables: System architecture documentation; FastAPI project
skeleton; Vue project skeleton; Pydantic/SQLAlchemy base classes; Jenkins pipelines;
deployment scripts; software deployment and server operations

■Collaboration Interfaces: Interface contracts between back-end controllers
and algorithm services; front-end Axios base configuration; coordination with
operations for the reverse proxy chain

■ Risk Mitigation: Architecture evolution and dependency upgrade strategy;
leading refactoring efforts when coupling issues arise

Wang Siyun (Login and Registration Module)
■ Responsibilities: UAM module (registration/login/user information); JWT

issuance and refresh; front-end authentication state and interceptors
■Key Deliverables: /api/user/register, /api/user/login, /api/user/info; Pinia user

store; token management and secure storage
■ Collaboration Interfaces: Defining authentication middleware with Yan

Hongyu; integration with front-end routing and interceptors; merging authorization
with historical record access

■Risk Mitigation: Protection against weak passwords and brute-force attempts;
consistency of error codes and user-friendly messages

 Liu Siyuan (AI Detection and Conversational Module)
■ Responsibilities: Session creation; image upload triggering analysis;

conversational APIs; context aggregation; front-end streaming rendering of
conversations and status indicators

■ Key Deliverables: /api/model/session; /api/model/session/{sessionId};
front-end conversation components and progress indicators

■ Collaboration Interfaces: Agreement on feature vector formats with
algorithm services; prompt and context structure alignment with the Ollama controller;
linkage with historical record persistence

■ Risk Mitigation: Network interruption handling and retry mechanisms;
context truncation and summarization strategies

65

 Chen Sifan (AI Inference Algorithm Module)
■ Responsibilities: YOLO localization, SAM segmentation, SE-ResNet

classification; training and inference optimization; error fallback and version
management

■ Key Deliverables: Model weights and loaders; asynchronous inference
services; feature vector generation and confidence logging; pipeline integration tests

■Collaboration Interfaces: Defining inference APIs with back-end controllers;
interfacing feature vectors and report context with LLM services; recording
ModelResults with the storage layer

■Risk Mitigation: Inference latency and resource utilization; quality thresholds
and failure notification strategies

 Gai Leilei (Historical Conversation Storage Module)
■Responsibilities: Session and message persistence; historical list and detail

APIs; retrieval and pagination; ER design and migration scripts
■ Key Deliverables: /api/model/session (list), /api/model/record/{sessionId}

(details); SQLite table schemas and ORM models; data consistency strategies
■Collaboration Interfaces: Message write integration with conversation and

report modules; front-end historical view rendering; unified authorization checks with
the authentication layer

■ Risk Mitigation: Concurrent writes and transaction management; data
migration and version evolution

8.2 Tools & Methodology

The project adheres to agile principles in both methodology and tooling. A
Scrum-based process with weekly iterations is adopted, complemented by 15-minute
online stand-up meetings every two days to identify and remove impediments. Each
sprint is driven by clearly defined goals, and once requirements are frozen, only minor
changes are accepted.

Requirements and task management are carried out using Feishu cloud documents,
where use-case-driven work items are decomposed with explicitly defined priorities,
owners, and deadlines. All tasks are described through well-defined requirement
documents to ensure clear scope boundaries and executable acceptance criteria.
Version and branch management follow a fixed standard: main serves as the stable
branch, dev is used for daily development, and fix/* branches are dedicated to bug
fixes. All Pull Requests must pass required checks before being merged.

The CI/CD process is centered around Jenkins pipelines, which uniformly execute
dependency installation, static code analysis (Lint), back-end unit and service tests
(pytest), and front-end end-to-end tests (Cypress), followed by build, packaging, and
artifact archiving. A work item is considered complete only when the code passes CI,
necessary test cases and documentation are updated in sync, and API contracts remain

66

stable without breaking existing integrations. By adopting a testing pyramid strategy,
unit and API tests form the foundation, while end-to-end tests cover critical user paths,
achieving a balance between quality assurance and feedback speed.

In terms of security and compliance, the back end uniformly enforces JWT-based
authentication and TLS-encrypted communication, with sensitive information injected
via credential management rather than stored in the codebase. License compliance
checks are performed for all third-party and open-source assets (such as YOLOv5,
SAM, and Ollama), strictly adhering to usage and distribution boundaries.
Configuration and environment management rely on requirements.txt for the back end
and package-lock.json for the front end to lock dependency versions. Parameterized
configuration via config.py supports multiple environments (dev/prod), while Jenkins
parameters and environment variables enable pipeline-level environment
differentiation.

For deployment and operations, an active – standby reverse proxy setup using
Nginx/Caddy, combined with FRP for internal network tunneling, is employed to
establish a secure access chain, with automatic certificate renewal configured to
ensure long-term HTTPS availability. On the client side, Electron packaging and
release processes are provided, along with maintained download sources and version
notes. Documentation and communication adhere to a single source of truth principle:
technical documentation, Apifox API documentation, and README files are kept
consistent. The team uses Feishu as the primary communication channel, ensuring
transparency and traceability of information and discussions.

67

Part09: User Guide

9.1 Installation

Since the system language of the demonstration machine is Chinese, the current
installation guide is in Chinese. If your computer's system language is English, the
installation guide will automatically switch to the corresponding language.

Taking the Windows x86-64 installation package as an example, after double-clicking
the installation package (a.exe executable file), the following interface will pop up:

Picture 9-1: Select the installation user

You can choose "Install just for me" or "Install for all users of this computer", then
click "Next".

Then you can choose the installation path of the application. You can use the default
installation path or click "Browse" to select your desired installation path.

68

Picture 9-2: View the installation path

Select the folder where you want to install the app, then click "OK".

Picture 9-3: Select the installation path

After completing the selection, simply click "Install".

69

Picture 9-4: Selection Completed

Then wait for the installation process.

Picture 9-5: Installing

70

After completing the installation, you can click "Finish" to exit the installation guide.
You can also check whether you want to launch the application immediately.

Picture 9-6: Installation Completed

9.2 Register & Login Page

After the user successfully starts the page, they will directly enter the login interface.
If the user does not have an account to log in, they need to click the "Go register"
button to reach the registration interface. The user can complete the registration by
filling in the email and password as prompted.

After the user registers an account, they click the "Go Login" text on the page. They
will enter the login interface and use the email and password they just registered to
log in. After successful login, they will enter the homepage of Paradox AI Tongue
Diagnosis Kit.

71

Picture 9-7: Register & Login Page

9.3 Home Page

The homepage presents some basic information about Paradox AI Tongue Diagnosis.
You can click "Start Diagnosis" or the "Examination" at the top to navigate to the
tongue image analysis page.

Picture 9-8: Home Page

72

9.4 Intelligent Tongue Diagnosis

Enter the title in "Input Record Name" and click the "Add" button to load a new
dialog.

Picture 9-9: Create a new chat

Upload the photo and click "Click here to upload a photo" to upload the tongue image
to the application.

Picture 9-10: Select an image

After the image upload is successful, the user needs to wait for about 25 seconds for
the model to run.

73

After waiting for about 30 seconds, the left AI dialog box will start to return the user's
tongue image status and the corresponding traditional Chinese medicine content of the
tongue image reaction word by word.

Picture 9-11: Return the analysis results

After the AI provides a specific report, the user can still have a conversation with this
AI model. At the same time, the model's backend stores all the chat records of this
conversation, and the model can call the features of the previous tongue image to
provide precise answers to the user's needs.

Picture 9-12: Continue the conversation

At the same time, the user can view the past chat records in the left column. Each chat
records the time when the conversation occurred.

74

9.5 Uninstallation

We still take the desktop application corresponding to the Windows x86-64
installation package as an example. You can open the installation directory
corresponding to the application, find the "Uninstall Tongue Diagnosis Kit.exe"
application, and double-click to execute it.

Picture 9-13: Find the Uninstall executable file

After double-clicking, click "Next" to continue.

Picture 9-14: Uninstallation Program

75

Wait for the uninstallation to complete

Picture 9-14: Uninstalling

After the uninstallation is complete, simply click "Finish".

Picture 9-15: Uninstalled

76

Part10 Conclusion

10.1 Challenges & Limitations

10.1.1 Challenges

10.1.1.1 Data quality and diversity

The scarcity of traditional Chinese medicine (TCM) tongue image data represents a
major challenge in current research. Due to the complexity of acquiring tongue
images, the availability of high-quality data for training and validation is relatively
limited. Moreover, the lack of unified annotation standards and significant variations
in data sources (such as lighting conditions, imaging devices, and shooting angles)
result in discrepancies between the training data distribution and real-world usage
scenarios, thereby constraining the model’ s generalization ability. In addition, the
fine-grained discrimination of features such as tongue color, coating color, thickness,
and greasiness relies heavily on professional expertise. Annotations provided by
non-experts are prone to introducing noisy labels, which further limits the upper
performance bound of the model.

10.1.1.2 The Accuracy Issue of Multi-model Integration

The current cascaded architecture of “YOLO-based localization → SAM-based
segmentation → SE-ResNet-based classification” introduces error propagation and
amplification across stages: inaccurate localization adversely affects segmentation,
while segmentation boundary errors interfere with classification features. Moreover,
differences in model versions, inference latency, and competition for computational
resources among multiple models add engineering complexity, leading to increased
performance variability and stability challenges.

10.1.2 Limitations

At the current stage, the main limitations of this project lie in areas such as medical
knowledge and validation, annotation standardization, scenario generalization, and
evaluation methodology. First, the team lacks a systematic background in traditional
Chinese medicine, and interpretations of tongue features primarily rely on large
language model generation, without yet forming a reusable “ feature –

syndrome/constitution” mapping or a closed-loop expert validation mechanism.
Second, the four-dimensional feature labels are inherently subjective and inconsistent
across data sources, lacking multi-rater agreement and a recognized gold standard,

77

which undermines the credibility of both training and evaluation. In addition, model
performance remains unstable under complex imaging conditions such as low lighting,
color bias, occlusion, and exposure of lips or teeth, while differences in device color
gamuts and white balance have not been sufficiently calibrated, resulting in limited
generalization capability. Finally, the evaluation framework is still largely based on a
single data source and a limited set of metrics, lacking systematic benchmarks and
error analysis across multiple datasets, devices, and population groups.

10.2 Future Enhancements

10.2.1 Model Performance Optimization

With respect to the current project outcomes, the model accuracy still has
considerable room for improvement. We plan to explore multiple approaches to
optimize model performance. For example, knowledge distillation (KD) can be
employed to guide a lightweight student model with fewer parameters to mimic a
high-capacity teacher model, thereby mitigating overfitting and enhancing the model’
s generalization ability.

10.2.2 Optimize the User Experience

The current application interface logic is relatively simple. In response to the diverse
needs of different user groups (such as general users and assisting physicians), we
plan to further optimize the interface and functional design based on user
requirements. For example, the application will be enhanced to allow direct access to
the user’s camera for tongue image acquisition, and the interface will be refined to
better align with common user interaction habits.

10.2.3 Detailed test results

Due to the lack of a formal medical background among project members, the results
currently displayed on the front-end interface are limited to symptom analyses
directly related to tongue image features. In future work, we plan to combine multiple
features to establish a four-dimensional “feature–symptom” mapping library, enabling
more precise and informative recommendations for users. In addition, we will explore
the visualization of historical records to provide users with more intuitive and
user-friendly services

References
[1] Zhang, J., Xie, Y., Xia, Y., & Shen, C. (2021). Dodnet: Learning to segment

multi-organ and tumors from multiple partially labeled datasets. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition (pp.
1195-1204).

[2] Ji, W., Yu, S., Wu, J., Ma, K., Bian, C., Bi, Q., … Zheng, Y. (2021). Learning
Calibrated Medical Image Segmentation via Multi-rater Agreement Modeling.
12336–12346. doi:10.1109/CVPR46437.2021.01216

[3] Tang, Q., Yang, T., Yoshimura, Y., Namiki, T., & Nakaguchi, T. (2020).
Learning-based tongue detection for automatic tongue color diagnosis
system. Artif. Life Robot., 25(3), 363–369. doi:10.1007/s10015-020-00623-5

[4] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (06
2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. 4510–4520.
doi:10.1109/CVPR.2018.00474

[5] Lowe, D. G. (2004). Distinctive image features from scale-invariant
keypoints. International journal of computer vision, 60(2), 91-110.

[6] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (11 2013). Rich Feature
Hierarchies for Accurate Object Detection and Semantic
Segmentation. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. doi:10.1109/CVPR.2014.81

[7] Brown, M., Gunn, S. R., & Lewis, H. G. (1999). Support vector machines for
optimal classification and spectral unmixing. Ecological Modelling, 120(2-3),
167-179.

[8] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 770-778).

[9] Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention (pp. 234-241).
Cham: Springer international publishing.

[10]Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 779-788).

[11]Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., ... &
Girshick, R. (2023). Segment anything. In Proceedings of the IEEE/CVF
international conference on computer vision (pp. 4015-4026).

[12]黄恩铭, 谭敏敏, & 袁晓琳. (2023). 基于舌象特征的中医体质自动辨别系统

研究. 现代计算机, 29(7), 116-120.
http://dx.chinadoi.cn/10.3969/j.issn.1007-1423.2023.07.021.

[13]江涛.(2020).基于深度学习的舌象智能诊断研究与应用(博士学位论文,上海中

医药大学).博士 https://doi.org/10.27320/d.cnki.gszyu.2020.000042.
[14]Ma, C., Zhang, P., Du, S., Li, Y., & Li, S. (2023). Construction of Tongue

Image-Based Machine Learning Model for Screening Patients with Gastric

Precancerous Lesions. Journal of personalized medicine, 13(2), 271.
https://doi.org/10.3390/jpm13020271

[15]Wu, L., Luo, X., & Xu, Y. (07 2020). Using convolutional neural network for
diabetes mellitus diagnosis based on tongue images. The Journal of
Engineering, 2020. doi:10.1049/joe.2019.1151

[16]Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K.
(2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5
MB model size. arXiv preprint arXiv:1602.07360.

[17]牛富泉.(2021).基于深度学习的中医舌像分类模型研究(硕士学位论文,电子科

技大学).硕士 https://doi.org/10.27005/d.cnki.gdzku.2021.005334.
[18]Li, Z., Ren, X., Xiao, L., Qi, J., Fu, T., & Li, W. (2022). Research on Data

Analysis Network of TCM Tongue Diagnosis Based on Deep Learning
Technology. Journal of healthcare engineering, 2022, 9372807.
https://doi.org/10.1155/2022/9372807

[19]Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification
with deep convolutional neural networks. Commun. ACM, 60(6), 84–90.
doi:10.1145/3065386

[20]Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 2818-2826).

[21]Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... &
Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 1-9).

[22]Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

	Part01: Introduction
	1.1 Problem Statement
	1.1.1 Reailty
	1.1.2 Ideal
	1.1.3 Proposal
	1.1.4 Consequences

	1.2 Background & Literature Review
	1.2.1 Current Situation of Overseas Research
	1.2.2 Current Situation of Domestic Research

	1.3 Stakeholders
	1.4 Scope of the Software
	1.5 Technologies and Tools Used

	Part02: Requirement Documents
	2.1 Functional Requirements
	2.1.1 User Account Management (FR-UAM)
	2.1.1.1 FR-UAM-01: User Registration
	2.1.1.2 FR-UAM-02: User Login

	2.1.2 Core process of intelligent tongue diagnosis
	2.1.2.1 FR-CORE-01: Initiate a diagnostic session
	2.1.2.2 FR-CORE-02: Tongue image upload
	2.1.2.3 FR-CORE-03: Automated tongue image analysi
	2.1.2.4 FR-CORE-04: Generate and display diagnosti
	2.1.2.5 FR-CORE-05: Continuous conversation and co

	2.1.3 Diagnostic History Management (FR-HIST)
	2.1.3.1 FR-HIST-01: Historical record display
	2.1.3.2 FR-HIST-02: View history

	2.2 Non-functional Requirements
	2.2.1 Performance requirements (NFR-PERF)
	2.2.1.1 NFR-PERF-01: Response time

	2.2.2 Availability requirements (NFR-USAB)
	2.2.2.1 NFR-USAB-01: Usability

	2.2.3 Reliability and Availability (NFR-REL/AV)
	2.2.3.1 NFR-REL-01: System stability
	2.2.3.2 NFR-REL-02: High Availability Entry

	2.2.4 Compatibility requirements (NFR-COMP)
	2.2.4.1 NFR-COMP-01: Client Compatibility

	2.2.5 Security requirements (NFR-SEC)
	2.2.5.1 NFR-SEC-01: Authentication and Authorizati
	2.2.5.2 NFR-SEC-02: Data transmission security
	2.2.5.3 NFR-SEC-03: Data persistence

	2.2.6 Maintainability and Scalability (NFR-MAINT/E
	2.2.6.1 NFR-MAINT-01: Modularization architecture
	2.2.6.2 NFR-EXT-01: The algorithm module is plugga
	2.2.6.3 NFR-EXT-02: Database is migratable

	Part03: Software Architecture
	3.1 System High-Level Architecture Diagram
	3.2 UML Diagrams (4+1 View)
	3.2.1 The Scenario View (User Interface View)
	3.2.2 The Logical View
	3.2.2.1 Sequence Diagram
	3.2.2.2 Class Diagram

	3.2.3 The Development View
	3.2.4 The Process View
	3.2.5 The Physical View

	3.3 Database Design / ER Diagram
	3.4 UI/UX Design

	Part04: API Documents
	4.1 Basic Format
	4.2 User Management
	4.2.1 User Registration
	4.2.2 User Login
	4.2.3 Get User Info
	4.2.4 Get User Record

	4.3 Tongue Diagnosis Analysis
	4.3.1 Upload image and analysis
	4.3.2 Send message to a session
	4.3.3 Obtain conversation chat records
	4.3.4 Obtain all conversation lists

	Part05: Software Implementation
	5.1 Development Approach
	5.1.1 Front-end Application
	5.1.2 Back-end Application
	5.1.3 Security System

	5.2 Key Algorithms and AI technologies
	5.2.1 Data Pre-processing
	5.2.1.1 Semantic Segmentation of Tongue Images
	5.2.1.2 Dataset Normalization
	5.2.1.3 Dataset Labeling
	5.2.1.4 Data Augmentation

	5.2.2 Classification Network Construction
	5.2.2.1 Residual Network
	5.2.2.2 Squeeze-and-Excitation Network
	5.2.2.3 The design of the Loss Function
	5.2.2.4 Gradient Descent based on Momentum
	5.2.2.5 Learning Rate Scheduling Algorithm

	5.3 Development collaboration

	Part06: Software Testing
	6.1 Test Strategy
	6.2 Test Cases & Results
	6.2.1 Front-end e2e testing
	6.2.2 Interface Layer - Apifox Testing
	6.2.3 Backend unit testing

	6.3 AI Performance Test
	6.3.1 Tongue color characteristics
	6.3.2 Tongue coating color characteristics
	6.3.3 Thickness of the tongue
	6.3.4 Greasy or slimy characteristics of the tongu
	6.3.5 Summary

	Part07: Software Deployment and Operations Managem
	7.1 Ops Technical Route
	7.2 Software Deployment Process
	7.2.1 Pre-requisite Requirements
	7.2.2 Configuration
	7.2.2.1 Backend Configuration
	7.2.2.2 Frontend Configuration

	7.2.3 Application Setup
	7.2.3.1 Backend Setup
	7.2.3.2 Frontend Setup

	7.3 Frp Service Configuration
	7.4 Nginx/Caddy Service Configuration
	7.4.1 Preceding dependency download
	7.4.2 Obtaining SSL Certificate - Let's Encrypt
	7.4.3 Create the Nginx configuration file
	7.4.4 Start the site and test the configuration
	7.4.5 Set up automatic renewal

	7.5 Client Application Preparation

	Part08: Project Management
	8.1 Roles & Responsibilities
	8.2 Tools & Methodology

	Part09: User Guide
	9.1 Installation
	9.2 Register & Login Page
	9.3 Home Page
	9.4 Intelligent Tongue Diagnosis
	9.5 Uninstallation

	Part10 Conclusion
	10.1 Challenges & Limitations
	10.1.1 Challenges
	10.1.1.1 Data quality and diversity
	10.1.1.2 The Accuracy Issue of Multi-model Integra

	10.1.2 Limitations

	10.2 Future Enhancements
	10.2.1 Model Performance Optimization
	10.2.2 Optimize the User Experience
	10.2.3 Detailed test results

